Acessos

segunda-feira, 28 de novembro de 2011

Física básica da tomografia computadorizada
Dra. Claudia da Costa Leite, Dr. Edson Amaro Júnior, Dra. Maria Garcia Otaduy


Principios da Formação de Imagem em Tomografia Computadorizada


Godfrey Hounsfield é que desenvolveu esta técnica de obtenção de imagens em 1972. Na verdade os princípios físicos da tomografia computadorizada são os mesmos da radiografia convencional. Para a obtenção de imagens são utilizados os raios-x. Enquanto na radiografia convencional ou simples o feixe de raio-x é piramidal e a imagem obtida é uma imagem de projeção, na tomografia computadorizada o feixe é emitido por uma pequena fenda e tem a forma de leque.

Na tomografia computadorizada o tubo de raio-x gira 360o em torno da região do corpo a ser estudada e a imagem obtida é tomográfica ou seja “fatias” da região do corpo estudada são obtidas. Em oposição ao feixe de raios-x emitidos temos um detector de fótons que gira concomitantemente ao feixe de raios-x. Como na radiografia convencional as características das imagens vão depender dos fótons absorvidos pelo objeto em estudo.

Dessa forma, os fótons emitidos dependem da espessura do objeto e da capacidade deste de absorver os raios-x. Os detectores de fótons da tomografia computadorizada transformam os fótons emitidos em sinal analógico (quanto mais Rx chega, maior é a diferença de potencial, ou voltagem que cada detector fornece ao computador) e depois digital (o computador converte os valores de voltagem, contínuos, em unidades digitais, vistas abaixo).

Como dito anteriormente, para a formação da imagem de tomografia computadorizada a emissão do feixe de raio-x é feita em diversas posições, posteriormente as informações obtidas são processadas utilizando uma técnica matemática chamada de projeção retrógrada, ou outras, como a transformada de Fourier.

Um tomógrafo é formado por um tubo no interior do qual há um anel no qual estão localizados em posições opostas o emissor do feixe de raio-x e os detectores, sendo que este conjunto gira 360 graus para a obtenção da imagem.

Atualmente há vários tipos de tomógrafo: convencional ou simplesmente tomografia computadorizada, tomografia computadorizada helicoidal, tomografia computadorizada “multi-slice” e tomógrafos mais sofisticados, como “ultra-fast” e “cone-beam”. Na tomografia helicoidal além do tubo de raio-x e os detectores girarem, a mesa também é deslocada e a trajetória do feixe de Rx ao redor do corpo é uma hélice (ou espiral, senso lato).
fonte detectores
Figura 1: esquema da fonte e detectores de um tomógrafo












Características das Imagens Tomográficas

Entre as características das imagens tomográficas destacam-se os pixels, a matriz, o campo de visão (ou fov, “field of view”), a escala de cinza e as janelas.
O pixel é o menor ponto da imagem que pode ser obtido. Assim uma imagem é formada por inúmeros pixels. O conjunto de pixels está distribuído em colunas e linhas que formam a matriz. Quanto maior o número de pixels numa matriz melhor é a sua resolução espacial, o que permite um melhor diferenciação espacial entre as estruturas.

O campo de visão (FOV) representa o tamanho máximo do objeto em estudo que ocupa a matriz, por exemplo, uma matriz pode ter 512 pixels em colunas e 512 pixels em linhas, e se o campo de visão for de 12 cm, cada pixel vai representar cerca de 0,023 cm (12 cm/512). Assim para o estudo de estruturas delicadas como o ouvido interno o campo de visão é pequeno, como visto acima enquanto para o estudo do abdômen o campo de visão é maior, 50 cm (se tiver uma matriz de 512 x 512, então o tamanho da região que cada pixel representa vai ser cerca de 4 vezes maior, ou próximo de 1 mm).

Em relação às imagens, existe uma convenção para traduzir os valores de voltagem detectados em unidades digitais. Dessa forma, temos valores que variam de –1000, onde nenhuma voltagem é detectada: o objeto não absorveu praticamente nenhum dos fótons de Rx, e se comporta como o ar; ou um valor muito alto, algo como +1000 ou mais, caso poucos fótons cheguem ao detector: o objeto absorveu quase todos os fótons de Rx. Essa escala onde –1000 é mais escuro, 0 é um cinza médio e +1000 (ou mais) é bem claro. Dessa forma quanto mais Rx o objeto absorver, mais claro ele é na imagem. Outra vantagem é que esses valores são ajustados de acordo com os tecidos biológicos.

A escala de cinza é formada por um grande espectro de representações de tonalidades entre branco, cinza e o preto. A escala de cinzas é que é responsável pelo brilho de imagem. Uma escala de cinzas foi criada especialmente para a tomografia computadorizada e sua unidade foi chamada de unidade Hounsfield (HU), em homenagem ao cientista que desenvolveu a tomografia computadorizada. Nesta escala temos o seguinte:

-zero unidades Housfield (0 HU) é a água,
-ar -1000 (HU),
-osso de 300 a 350 HU;
-gordura de –120 a -80 HU;
-músculo de 50 a 55 HU.

Janelas são recursos computacionais que permitem que após a obtenção das imagens a escala de cinzas possa ser estreitada facilitando a diferenciação entre certas estruturas conforme a necessidade. Isto porque o olho humano tem a capacidade de diferenciar uma escala de cinzas de 10 a 60 tons (a maioria das pessoas distingue 20 diferentes tons), enquanto na tomografia no mínimo, como visto acima há 2000 tons. Entretanto, podem ser obtidos até 65536 tons – o que seria inútil se tivessemos que apresentá-los ao mesmo tempo na imagem, já que não poderíamos distingui-los. A janela é na verdade uma forma de mostrar apenas uma faixa de tons de cinza que nos interessa, de forma a adaptar a nossa capacidade de visão aos dados obtidos pelo tomógrafo.

Numa janela define-se a abertura da mesma ou seja qual será o número máximo de tons de cinza entre o valor númerico em HU do branco e qual será o do preto. O nível é definido como o valor (em HU) da média da janela.

O uso de diferentes janelas em tomografia permite por exemplo o estudo dos ossos com distinção entre a cortical e a medular óssea ou o estudo de partes moles com a distinção, por exemplo, no cérebro entre a substância branca e a cinzenta. A mesma imagem pode ser mostrada com diferentes ajustes da janela, de modo a mostrar diferentes estruturas de cada vez. Não é possível usar um só ajuste da janela para ver, por exemplo, detalhes ósseos e de tecido adiposo ao mesmo tempo.

As imagens tomográficas podem ser obtidas em 2 planos básicos: o plano axial (perpendicular ao maior eixo do corpo) e o plano coronal (paralelo a sutura coronal do crânio ou seja é uma visão frontal). Após obtidas as imagens, recursos computacionais podem permitir reconstruções no plano sagital (paralelo a sutura sagital do crânio) ou reconstruções tri-dimensionais.


Como na radiografia convencional o que está sendo analisado são diferenças de densidade, que podem ser medidas em unidades Hounsfield.

Para descrever diferenças de densidades entre dois tecidos é utilizada uma nomeclatura semelhante à utilizada na ultrassonografia: isoatenuante, hipoatenuante ou hiperatenuante. Isoatenuante é utilizada para atenuações tomográficas semelhantes. Hipoatenuantes para atenuações menores do que o tecido considerado padrão e hiperatenuante para atenuações maiores que o tecido padrão (geralmente o órgão que contém a lesão é considerado o tecido padrão, ou quando isto não se aplica, o centro da janela é considerado isoatenuante).
www.hcnet.usp.br/.../...
Bianca Ribeiro

0 comentários:

Postar um comentário

Gostou? Digite aqui seu comentário :D

Física em Evolução - FV Sponsored by:Felipe Gustavo